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Abstract (maximum ~200 words). 

Scientific progress in many disciplines is increasingly enabled by our ability to examine natural phenomena through the computational lens, 
i.e., using computational abstractions of the underlying processes; and our ability to acquire, share, integrate, and analyze disparate types 
of data. These advances would not be possible without the advanced data and computational infrastructure and tools for data integration, 
analysis, modeling, and simulation. However, despite, and perhaps because of, advances in “big data” technologies for data acquisition, 
management and analytics, the other largely manual, and labor-intensive aspects the scientific process, e.g., formulating questions, 
designing studies, organizing, curating, and integrating data, drawing inferences and interpreting results, have become the rate-limiting 
steps in scientific progress. Accelerating science requires support for computational abstractions of scientific domains, coupled with 
methods and tools for their analysis, synthesis, simulation, visualization, sharing, and integration; cognitive tools that leverage and extend 
the reach of human intellect, and partner with humans on all aspects of science; representations, processes, protocols, workflows that 
embody computational abstractions of the scientific process; and because science is increasingly a collaborative endeavor, support for 
organizational and support for team science that transcends disciplinary boundaries. 

Question 1 Research Challenge(s) (maximum ~1200 words): Describe current or emerging science or engineering research challenge(s), 
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providing context in terms of recent research activities and standing questions in the field. 

The emergence of “big data” offers unprecedented opportunities for not only accelerating scientific advances but also enabling new modes 
of discovery. For example, advances in sequencing, imaging, and online text , coupled with domain-specific computational abstractions, 
and new methods and tools for data integration, analysis, and modeling, are enabling biologists to gain insights into how living systems 
adapt and thrive; neuroscientists to uncover how brains adapt and learn; health scientists to personalize treatments and interventions to 
optimize health outcomes; economists to understand markets; education researchers to personalize curricula and pedagogy to optimize 
learning outcomes; social scientists to study why organizations, societies, and cultures succeed or fail. 

These advances would not be possible without the advanced data and computational infrastructure and tools for data integration, analysis, 
modeling, and simulation. However, despite, and perhaps because of, advances in “big data” acquisition, management and analytics, the 
other largely manual, and labor-intensive aspects the scientific process, e.g., formulating questions, designing, generating hypotheses, 
prioritizing and executing studies, organizing, curating, and integrating data, drawing inferences, interpreting results, and evaluating 
models, have become the rate limiting steps in scientific progress. 

Consider for example, the task of identifying a question for investigation in a domain of inquiry, e.g., the Life Sciences. This is a non-trivial 
task that requires a good grasp of the current state of knowledge, the expertise and skills needed, the instruments of observation available, 
the experimental manipulations that are possible, the data analysis and interpretation tools available, etc. Understanding the current state 
of knowledge requires mastery of the relevant scientific literature which, much like many other kinds of “big data”, is growing at an 
exponential rate. The sheer volume and the rate of growth of scientific literature makes it impossible for a scientist to keep up with 
advances that might have a bearing on the questions being pursued in one’s laboratory. The magnitude of this challenge is further 
compounded by the fact that many scientific investigations increasingly need to draw on data from a multitude of databases (e.g., Genbank, 
Protein Data Bank, etc. in the life sciences) and expertise and results from multiple disciplines. 

Scientific progress in many disciplines is increasingly enabled by our ability to examine natural phenomena through the computational lens, 
i.e., using computational abstractions of the underlying processes; and our ability to acquire, share, integrate, and analyze disparate types 
of data. These advances would not be possible without the advanced data and computational infrastructure and tools for data integration, 
analysis, modeling, and simulation. However, despite, and perhaps because of, advances in “big data” technologies for data acquisition, 
management and analytics, the other largely manual, and labor-intensive aspects the scientific process, e.g., formulating questions, 
designing studies, organizing, curating, and integrating data, drawing inferences and interpreting results, have become the rate-limiting 
steps in scientific progress. Accelerating science requires support for computational abstractions of scientific domains, coupled with 
computational methods and tools for their analysis, synthesis, simulation, visualization, sharing, and integration; cognitive tools that 
leverage and extend the reach of human intellect, and partner with humans on all aspects of science; agile and trustworthy data cyber
infrastructures that connect, manage diverse instruments; representations, processes, protocols, workflows that embody computational 
abstractions of the scientific process; and because science is increasingly a collaborative endeavor, support for organizational and social 
structures and processes for team science that transcends disciplinary and institutional boundaries. 

As another example, consider the task of designing a new material with some desired properties. This requires a careful exploration of the 
space of possible material compositions and manufacturing processes that could yield the material with the desired properties, their relative 
cost, risk, and feasibility, in the context of all that is known in the relevant areas of science and engineering. However, the absence of 
shared data storage and management services and agreed upon shared vocabularies, metadata standards and ontologies presents a 
significant hurdle to data curation, data discovery, and data exchange with other scientists, as well as efforts to combine data from 
simulations, experiments, and observations. 

The preceding examples are intended to be illustrative, and by no means exhaustive. 

Question 2 Cyberinfrastructure Needed to Address the Research Challenge(s) (maximum ~1200 words): Describe any limitations or 
absence of existing cyberinfrastructure, and/or specific technical advancements in cyberinfrastructure (e.g. advanced computing, data 
infrastructure, software infrastructure, applications, networking, cybersecurity), that must be addressed to accomplish the identified 
research challenge(s). 

We see the need for advances in cyberinfrastructure in several broad thematic areas: 
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Computational abstractions of scientific domains and formal methods and tools for their analysis, integration, visualization, simulation, 
sharing, and discovery. A key prerequisite for realizing the full potential of data and computation to accelerate science and enable new 
modes of discovery is the ability to view scientific domains through a computational lens, that is, in terms of computational abstractions. Of 
particular interest are system-level, mechanistic, computational models of physical, biological, cognitive, and social systems that enable the 
integration of different processes into coherent and rigorous representations that can be analyzed, simulated, integrated, shared, validated 
against experimental data, and used to guide experimental investigations. These models must not only cross levels of abstraction, but also, 
disciplinary boundaries, to allow studies of complex interactions, e.g., those that couple food, energy, water, environment, and people. 

Hardware infrastructure: High end computational capabilities for modeling, simulation, data analysis and inference. The need for such 
systems to support physical modeling and simulation problems continues to grow, due to the increasing complexity of scientific inquiry, 
addressing multiphysics problems and increasing dynamic range in space and time. This will drive the need for access to computational 
systems of the highest scales in order to be scientifically competitive. At the same time, there is additional demand for computational 
growth in high throughput computations, e.g., millions of materials modeling simulations to screen for materials with particular properties 
needed for batteries, electronics, and other applications. These simulations require systems similar to those at the largest scales, including 
tightly coupled parallel architectures with high performance floating point appropriately balanced with memory bandwidth, high speed 
interconnects (although at a smaller scale), and software to co-schedule parallel jobs across nodes. The growing size and complexity of 
data from simulations, experiments, and embedded sensors will also drive the need for computational infrastructure. With deep learning 
approaches alone, access to large amounts of computing to train these networks is as important as access to large data sets. Architectural 
choices for machine learning, graph analytics or other data analysis problems may be different than simulation, e.g., leveraging lower 
precision floating point or requiring low latency networks for walking over graphs, although today similar processor architectures (including 
GPUs) are being used. An important feature of the computational lens model of science is that it involves integration of data, models and 
prediction, suggesting that systems will need to handle diverse workloads to efficiently support the scientific process. 
Data intensive problems will require increased networking with unique demands for tools and systems to serve high-speed flows from large 
experiments, as well as on-demand computing that are not suited to queue-based scheduling. Complex workflows may also benefit from 
containerized software, and storage models will need to evolve to address provenance, accessibility and sustained availability. 

Cognitive tools for scientists: The next generation cyberinfrastructure for science needs to provide a broad range of cognitive tools for 
scientists, i.e., computational tools that leverage and extend human intellect, and partner with humans on a broader range of tasks that 
make up a scientific workflow (formulating a question, designing, prioritizing and executing experiments designed to answer the question, 
drawing inferences and evaluating the results, and formulating new questions, in a closed-loop fashion). That is, the cyberinfrastructure 
needs to support computational abstractions of various aspects of the scientific process; development of the computational artifacts 
(representations, processes, software) that embody such abstractions; and the integration of the resulting artifacts into collaborative 
human-machine systems to advance science (by augmenting, and whenever feasible, replacing individual or collective human efforts). The 
resulting computer programs would need to close the loop from designing experiments to acquiring, curating, and analyzing data to 
generating and refining hypotheses back to designing new experiments. Particularly needed are cognitive tools for: Mapping the current 
state of knowledge in a discipline and identifying the major gaps; Generating and prioritizing questions that are ripe for investigation based 
on the current scientific priorities and the gaps in the current state of knowledge; Machine reading, including methods for extracting and 
organizing descriptions of experimental protocols, scientific claims, supporting assumptions, and validating scientific claims from scientific 
literature, and increasingly scientific databases and knowledge bases; Literature-based discovery, including methods for drawing inferences 
and generating hypotheses from existing knowledge in the literature (augmented with discipline-specific databases and knowledge bases of 
varying quality when appropriate), and ranking the resulting hypotheses; Expressing, reasoning with, and updating scientific arguments 
(along with supporting assumptions, facts, observations), including languages and inference techniques for managing multiple, often 
conflicting arguments, assessing the plausibility of arguments, their uncertainty and provenance; Observing and experimenting, including 
languages and formalisms for describing and harmonizing the measurement process and data models, capturing and managing data 
provenance, describing, quantifying the utility, cost, and feasibility of experiments, comparing alternative experiments, and choosing optimal 
experiments (in a given context); Navigating the spaces of hypotheses, conjectures, theories, and the supporting observations and 
experiments; Analyzing and interpreting the results of observations and experiments, including machine learning methods that: explicitly 
model the measurement process, including its bias, noise, resolution; incorporate constraints e.g., those derived from physics, into data-
driven inference; close the gap between model builders and model users by producing models that are expressible in representations 
familiar to the disciplinary scientists; 
Synthesizing, in a principled manner, the findings, e.g., causal relationships from disparate experimental and observational studies (e.g., 
implications to human health of experiments with mouse models). Because science is increasingly a collaborative endeavor, we need 
advances in cyberinfrastructure to support: The creation and sharing of human understandable and computable representations of scientific 
artifacts, including data, experiments, hypotheses, conjectures, models, theories, workflows, etc. across organizational and disciplinary 
boundaries; Documenting, sharing, reviewing, replicating, and communicating entire scientific studies in the form of reproducible and 
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extensible scientific workflows (with provision for capturing data provenance); Automating the discovery, adaptation, and when needed, 
assembly of complex analytic workflows from available components; Communicating results of scientific studies and integrating the results 
into the larger body of knowledge within or across disciplines; Collaborating, communicating, and forming teams with other scientists with 
complementary knowledge, skills, expertise, and perspectives on problems of common interest (including problems that span disciplinary 
boundaries or levels of abstraction); Organizing and participating in team science projects, including tools for decomposing tasks, assigning 
tasks, integrating results, incentivizing participants, and engaging large numbers of participants with varying levels of expertise and ability in 
the scientific process; Tracking scientific progress, the evolution of scientific disciplines, and scientific impact. 

Question 3 Other considerations (maximum ~1200 words, optional): Any other relevant aspects, such as organization, process, learning 
and workforce development, access, and sustainability, that need to be addressed; or any other issues that NSF should consider. 

Trustworthy Data Cyberinfrastructure: Because science increasingly relies on data that are subject to restrictions on access and use, we 
need: Computable data access and use agreements that can be enforced by the scientific workflow within a secure cyberinfrastructure; 
Audit mechanisms that can be used to verify compliance with the applicable data access and use agreements; Repositories of data use 
agreements that can be adapted and reused in a variety of settings; 
Agile and secure computing and network services and protocols that can adjust and protect different types and ages of scientific 
instruments: Many scientific instruments, (e.g., a microscope which is purchased to last a decade or longer), and their software are 
purchased and upgraded at very different schedule than computing and networking software (operating system, security, network services, 
which are often upgraded every few months); Time-evolvable access privileges to data that follow the scientific process from creating data 
during the experiment to publishing data in public repositories (At the beginning of the scientific process, scientists are very protective of 
their data; However, after publishing the results, scientists are open to publish and share data. Hence, different access controls need to be 
ensured); Distributed data management systems that enable integrative analyses of data from different disciplines. 

Because addressing the scientific challenges that address societal needs requires the deep integration of knowledge, techniques, and 
expertise that transcend disciplinary boundaries, cyberinfrastructure in support of 21st century science needs to support multi-disciplinary, 
interdisciplinary, and transdisciplinary teams that bring together: Experimental scientists in a discipline, e.g., the biomedical sciences, with 
information and computer scientists, mathematicians, etc., to develop algorithmic or information processing abstractions to support 
theoretical and experimental investigations; Organizational and social scientists and cognitive scientists to study such teams, learn how 
best to organize and incentivize such teams and develop a science of team science; 
Experimental scientists in one or more disciplines, computer and information scientists and engineers, organizational and social scientists, 
cognitive scientists, and philosophers of science to design, implement, and study end-to-end systems that flexibly integrate the relevant 
cognitive tools into complex scientific workflows to solve broad classes of problems in specific domains, e.g., understanding complex 
interactions between food, energy, water, environment, and populations. 

Training the 21st century scientists who can both leverage and contribute to advances in cyberinfrastructure requires interdisciplinary 
graduate and undergraduate curricula and research based training programs to prepare: A diverse cadre of computer and information 
scientists and engineers with adequate knowledge of one or more scientific disciplines to design, construct, analyze and apply algorithmic 
abstractions, cognitive tools, and end-to-end scientific workflows in those disciplines; 
A new generation of natural, social, and cognitive science researchers and practitioners fluent in the use of algorithmic abstractions and 
cognitive tools to dramatically accelerate and explore new modes of discovery within and across disciplines. 

Ensuring that the cyberinfrastructure investments lead to advances in the state-of-the-art in computational and data infrastructure for 
science requires support for: Operational infrastructure based on the best available computing and information technology; Integrated data 
cyber-infrastructure that allows the sharing of data and metadata from simulations and experiments on scientific instruments; Experimental 
infrastructure to explore novel data, computing, and collaborative technologies and platforms, including the basic computer science and 
engineering advances needed to meet the needs of 21st century science; 
Datasets and tools for training and education that include data from successful as well as failed studies, including experiments and 
computational analyses. 
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